
StreamByter
General	purpose	programmable	MIDI	effects	plugin	for	CoreMIDI
and	Audio	Units	V3	(macOS	and	iOS).
Version	1.6,	October	2019

Quick	Start
Check	out	StreamByter	University	for	detailed	articles	on	getting	started	and	tutorials.
First,	insert	the	AU	into	a	suitable	host	application	or	connect	up	the	standalone	app	via
CoreMIDI	(a	virtual	input	and	output	are	advertised	that	you	can	connect	to/from	other	apps).
Then,	you	instruct	the	StreamByter	to	operate	on	the	MIDI	events	passing	through	using
textual	rules	(defined	in	detail	below).	To	apply	your	rules	you	press	the	'Install	Rules'	button
which	checks	them	and	if	all	correct	they	will	then	be	operational.
Here	are	some	useful	and	basic	rules	that	you	can	copy/paste	to	get	going	straight	away:

 # filtering rules
 X1-F = XX +B # only pass channel 1
 NX = XX +B # block all note events
 BX = XX +B # block all controller events
 F8-C = XX +B # block all clock events

 # remapping rules
 XX = X0 # remap everything to channel 1
 N9 = X0 # remap notes on channel 10 to channel 1
 NX 24 = XX 28 # remap note C1 to E1

 # cloning rules
 NX = XX +D400 +C # echo each note with 400ms delay
 BX 07 = XX 08 +C # clone CC7 to CC8

 # split all notes below middle C to channel 2
 # all notes from middle C and up to channel 3
 NX 00-3B = X1
 NX 3C-7F = X2

 # create an overlapping split C-2 to B3 = CH3
 # C-1 to B4 = CH 4
 NX 00-53 = X2
 NX 47-53 = X3 +C
 NX 54-7F = X3

History	and	Introduction
The	original	Stream	Byter	first	appeared	as	a	module	in	our	MidiBridge	app	in	order	for	us	to
extend	its	features	'out	in	the	field'	for	customers	(and	was	really	only	for	internal	use),	but
gradually	became	one	of	the	most	used	(and	infamous)	aspects	of	that	app.	Based	on	our
experiences	and	many	suggestions,	we	extended	the	Stream	Byter	module	for	MidiBridge's
successor	app,	MidiFire.	Whilst	retaining	backwards	compatibility,	the	MidiFire	Stream	Byter
was	redesigned	and	coded	from	the	ground	up	and	is	much	more	advanced.	This	AU

implements	the	MidiFire	Stream	Byter	module	and	thus	includes	both	the	MidiBridge	(Stream
Byter	I)	and	MidiFire	(Stream	Byter	II)	feature	sets.
You	use	the	StreamByter	to	program	your	own	custom	MIDI	processing	modules	which	you
can	then	go	on	to	re-use	again	and	again.
With	power	comes	complexity,	so	the	StreamByter	has	a	bit	of	a	learning	curve	and	you	also
need	to	understand	the	MIDI	protocol.	Many	customers	have	mastered	the	StreamByter	but
we	do	recognise	it	is	somewhat	esoteric.	Therefore	we	offer	to	provide	assistance	in	writing
StreamByter	rules	via	email	or	via	our	soapbox	forum	for	those	that	have	better	things	to	do
with	their	time.
If	however,	you	are	not	daunted	by	a	bit	of	complexity,	then	later	in	this	dosument	is	'the	gory
detail'	(that's	a	nod	to	the	PERL	manual)	for	reference	purposes.
Tip	-	if	you're	looking	for	the	syntax	for	specific	rules,	then	here	is	a	handy	set	of	links	for
you:	Stream	Byter	I,	Stream	Byter	II,	Variables/Values,	Conditionals,	Assign,	Send,	Maths,
Labels/Flags,	UI	Controls,	Macros/Subroutines/Includes,	Logging,	QWERTY	keystrokes
(mac)

Setting	up	-	AUv3

The	Audio	Unit	is	installed	automatically	when	the	app	is	downloaded.	It	advertises	itself	as
both	an	Instrument	and	Effect	processor.	Generally,	you	would	use	the	'Effect'	variant	although
some	hosts	you	need	to	use	the	Instrument	type.	The	StreamByter	window	is	fully	resizable
(iOS	only),	so	where	the	host	app	permits	you	can	increase/decrease	the	size	of	the	window	or
use	it	fullscreen.
Each	host	app	is	different	but	essentially	you	use	the	hosts's	Audio	Unit	setup	to	insert	the
StreamByter	into	your	workflow.	So	far	StreamByter	has	been	tested	and	known	to	work	in
AUM,	apeMatrix,	Cubasis,	Audiobus,	and	sequencism.	A	couple	of	specific	tips	for	usage:

Cubasis	-	make	sure	the	piano	keyboard	is	showing	when	you	want	to	edit	StreamByter
rules.	This	moves	the	plugin	window	upward;	if	you	don't	then	the	typing	keyboard	covers
the	edit	box.

Sequencism	-	use	the	'Instrument'	variant	of	the	plugin.

In	an	AU	environment,	the	host	has	to	request	events	from	the	AU	and	this	is	done	(generally)
only	while	audio	is	running.	This	has	an	effect	on	SND	rules	inside	an	IF/LOAD	statement.
Depending	on	the	host	app,	these	can	be	delayed	until	the	host	(re)starts	audio	processing.

Setting	up	-	CoreMIDI

While	the	Audio	Unit	may	be	instantiated	many	times,	the	standalone	CoreMIDI	version	is	a
singleton	app	and	only	one	instance	can	be	running	on	the	device.
After	you	start	the	app,	it	will	advertise	an	input	and	output	virtual	MIDI	port	pair	which	can	be
seen	in	other	apps	and	can	this	be	inserted	into	your	workflow	by	making	the	appropriate
virtual	CoreMIDI	connections	in	the	3rd	party	app(s).	If	you	need	to	process	hardware,
bluetooth	or	network	MIDI,	then	you	will	need	a	routing	app	like	MidiFire	to	interconnect
(although	in	this	case	MidiFire	has	the	StreamByter	module	built	in).
Here	is	the	main	interface	panel	and	description	of	each	element:

	
StreamByter

The	Stream	Byter	panel	contains	an	editable	text	window	for	you	to	define	rules	to	match	and
act	on	MIDI	events.	One	rule	per	line	is	permitted	and	you	can	comment	your	rules	by
preceding	your	commentary	with	a	'#'	symbol.
Once	you	have	entered	your	rules,	you	press	the	'Install	Rules'	button	which	checks	your	rules
for	validity.	If	any	rules	are	incorrect,	these	are	marked	with	'ERR'	and	are	commented	out.	To
fix	a	rule	with	an	error,	simply	edit	the	line	(no	need	to	remove	the	'#ERR'	part!)	and	press	the
'Install	Rules'	button	to	try	again.
Next	to	the	'Install	Rules'	button	are	two	labels	whose	values	can	be	set	programatically	within
your	StreamByter	rules.
At	the	bottom	right	you	will	find	some	extra	control	buttons:

-	Presets	Management

-	MIDI	Event	Monitor

-	This	Help	Page

Presets	Management

You	can	manage	StreamByter	presets	internally	if	you	wish.	Presets	can	be	saved	locally	or	to
iCloud.	The	factory	presets	(read	only)	are	also	available	in	the	preset	manager.	Use	the
dropdown	menu	at	the	bottom	to	switch	between	the	different	locations.

Presets	stored	to	'Local'	in	the	AU	variant	are	available	on	the	local	device	to	each	instance	of
the	AU	in	any	host.	In	the	standalone	variant,	local	presets	are	available	only	to	the	standalone
app.
iCloud	presets	are	available	across	all	devices	(mac	or	ios)	provided	that	iCloud	Drive	is	active
and	logged	in	with	the	same	credentials.
Use	the	'Save',	'Load'	and	'Delete'	buttons	to	manage	the	presets	in	the	current	location.	For
Load	and	Delete	you	must	select	a	preset	in	the	list	first.
Press	'Done'	to	return	to	the	main	panel.

MIDI	Event	Monitor

The	MIDI	Monitor	panel	displays	all	events	entering	and	leaving	the	StreamByter	in	textual	and
hex	format	along	with	the	events'	timestamps.
Use	the	'Clear'	button	to	clear	the	current	events	from	both	the	'IN'	and	'OUT'	sub-monitors.
Press	'Done'	to	return	to	the	main	panel.
Tip	-	For	efficiency,	monitoring	of	events	does	not	start	until	you	have	opened	the
monitor	panel	at	least	once.
The	remainder	of	this	manual	details	the	StreamByter	rule	syntax	and	semantics.

Stream	Byter	I	(MidiBridge	version)

This	first	section	of	the	StreamByter	reference	covers	the	MidiBridge	version	of	the	Stream
Byter	to	which	StreamByter	is	(almost	completely)	backwards	compatible.	This	section	was
lifted	(with	slight	modification)	from	the	MidiBridge	manual	and	we've	kept	it	mostly	intact	for
posterity	reasons.
Some	of	the	things	you	can	do	with	the	MidiBridge	Stream	Byter	are:

Map	any	MIDI	event	to	any	other	MIDI	event	including	type,	channel	and	value.

Create	up	to	128	non-contiguous	zones	per	channel.

Create	overlapping	zones.

Split	controller	messages	into	channelised	zones.

Use	note	events	to	change	scenes.

More	precise	blocking	of	events	than	the	event	filter.

This	is	hardly	an	exhaustive	list,	but	with	flexibility	comes	some	complexity,	and	to	use	the
Stream	Byter	you	do	need	an	understanding	of	the	MIDI	protocol,	but	fear	not,	as	because	it	is
possible	to	paste	rules	from	an	email,	we	can	help	by	designing	rulesets	for	what	you	are
trying	to	achieve	and	email	them	to	you.
We	have	also	produced	a	detailed	tutorial	for	creating	Stream	Byter	rulesets	(on	our	website)
and	you	can	also	post	queries	about	this	(and	of	course	anything	MidiBridge	related)	on	our
support	forum,	again,	see	our	website.
Each	rule	consists	of	two	clauses,	separated	by	one	'='	sign.
The	clause	to	the	left	of	the	'='	is	the	input	clause	where	you	specify	which	MIDI	events	are	to
be	considered.

The	clause	to	the	right	of	the	'='	is	the	output	clause	where	you	specify	what	happens	to	an
event	when	it	matches	the	input	clause.
You	can	also	specify	flags	at	the	end	of	the	output	clause:

+C	-	clone	the	incoming	message	and	apply	the	output	clause	to	the	clone.

+B	-	block	the	incoming	message	if	it	matches	the	input	clause

+Dnnn	-	delay	the	event	by	nnn	milliseconds

Both	input	and	output	clauses	are	constructed	by	1,2	or	3	separate	hex	bytes	depending	upon
the	nature	of	the	rule.	Here	are	some	simple	examples:

remap all controller events coming in
on channel 1 to channel 2
B0 = B1

clone all controller events coming in
on channel 1 to channel 2
B0 = B1 +C

remap controller 7 on channel 0 to
controller 6 on channel 1
B0 07 = B1 06

remap note C-2 to program change 0
(on channel 1)
90 00 = C0 00

You	can	also	specify	wildcards	and	ranges	in	the	incoming	clause:

The	value	'N'	in	the	first	nibble	of	the	first	byte	represents	note	on	and	note	offs	(ie.	8	or	9)

The	value	'X'	in	the	first	nibble	of	the	first	byte	represents	all	event	types.

The	first	nibble	of	the	first	byte	(type)	can	be	set	with	a	range	of	types	to	match.	(0-F)

The	value	'X'	in	the	second	nibble	of	the	first	byte	represents	any	channel.

The	value	'XX'	for	the	second	or	third	bytes	represent	any	value.	(00-7F)

The	second	nibble	of	the	first	byte	(channel)	can	be	set	with	a	range	of	channels	to	match.
(0-F)

Here	are	some	examples	of	wildcards:

rewrite all events on channel 1
to channel 2
X0 = X1

rewrite all note on/off messages on
channel 1 to channel 2
N0 = X1

collapse all notes on all channels
to channel 1
NX = X0

block active sense messages
FE = XX +B

control controllers 6 and 7 with
controller 6
BX 06 = XX 07 +C

rewrite all program changes to program
change 1 on same channel
CX XX = XX 01

You'll	note	that	you	can	use	'X'	and	'XX'	wildcards	in	the	output	clause.	This	signifies	that	the
incoming	corresponding	value	of	the	event	is	to	be	preserved.
You	can	also	replace	byte	2	with	byte	3	(and	vice	versa)	by	specifying	'X2'	and	'X3'	for	the
values	of	byte	2	or	3	in	the	output	clause.
You	can	specify	ranges	of	values	using	the	'-'	sign	inbetween	low	and	high	values	for	type	(8-F),
channel	(0-F),	number	(00-7F)	and	value	(00-7F).	Examples:

remap all events on channels 1-8 to channel 9
X0-8 = X9

limit the max velocity on all notes on channel 2
N1 XX 40-7F = XX XX 40

These	examples	are	quite	simple	and	are	to	provide	a	foundation	for	writing	more	useful	real-
world	rules.	Again,	please	do	look	at	our	tutorial,	post	to	our	forum	or	email	us	if	you	would
like	help	in	creating	custom	rules	for	your	requirements.	There	is	no	doubt	that	this	module	is
not	for	the	beginner.
Finally,	some	caveats	to	be	aware	of	when	writing	rules:

Rules	are	evaluated	top	to	bottom	and	the	results	of	each	rule	are	fed	into	the	next	(unless
the	clone	flag	is	set).

Stream	Byter	II	(MidiFire	extensions)

Stream	Byter	extends	the	MidiBridge	Stream	Byter	with	many	oft-requested	features	and
incorporates	a	slightly	different	way	of	specifying	rules.	You	can	mix	and	match	Stream	Byter	I
and	II	rules	in	most	circumstances.
Let's	start	with	some	basics:

Variables

Each	StreamByter	has	its	own	set	of	four	local	variable	arrays	(prefixed	by	I,	J,	K	and	L)	and
there	is	one	global	variable	array	(prefixed	by	G)	shared	among	all	StreamByters	per	host	app.
These	arrays	each	have	256	slots	of	unsigned	16	bit	integers.	A	'wide'	array,	prefixed	by	W,	has
2048	slots	of	unsigned	16	bit	integers.	A	'precision'	array,	prefixed	by	P,	has	256	slots	of	32	bit
signed	integers.
The	current	MIDI	message	being	processed	is	also	addressed	as	an	unsigned	8	bit	array	(max
size	65536	bytes)	prefixed	by	the	letter	M.	Sliders	(see	below)	manage	a	16	slot	array	of	16	bit
signed	integers	prefixed	by	Q.	Each	variable	letter	is	followed	by	a	number	(hex	or	decimal)
that	marks	the	position	in	the	array	starting	from	0.	Some	examples:

L00 - local array L, 1st index
I2A - local array I, 43rd index
I$43 - local array I, 43rd index
G72 - global array G, 115th index

M03 - message byte number 4 (counting from 1)
M1234 - message byte number 4661 (sysex message!)
M$1234 - message byte number 1235 (using decmial)
Q0 - 1st slider

A	special	variable	ML	contains	the	length	of	the	current	MIDI	message,	Special	variable	MC
contains	the	MIDI	channel	(0-F)	of	the	current	message	(although	this	returns	F0	if	the	message
is	not	a	channelised	message).	Special	variable	MT	contains	the	MIDI	type/status	([8-F]0)	of	the
current	message	(ie.	the	first	nibble	of	the	first	byte,	with	any	channel	removed).	None	of	these
variables	can	be	assigned	to;	treat	as	read-only.
An	astute	reader	may	realise	that	'MC'	should	be	the	13th	byte	of	a	message.	This	was	an
oversight	and	rather	than	break	existing	scripts,	to	get	the	13th	element	of	a	message	use
M$12.
Another	special	variable	'R'	returns	a	random	number	from	0	to	(nnn	is	hex	number	or
variable).	This	variable	may	not	be	assigned	directly.
The	special	variable	'BP'	(or	'BPM'	if	you	like)	will	contain	the	current	tempo	(if	known)	of	the
host	or	in	the	standalone	version	of	any	MIDI	clock	received.	The	BPM	value	is	in	100's	of	the
BPM,	so	for	example	a	BPM	of	127.32	will	have	a	value	in	the	variable	of	12732.
The	special	variable	'PO'	(or	'POS'	if	you	like)	will	contain	the	current	host	transport	position	in
milliseconds	(if	running).	This	is	a	32	bit	signed	value.
Variables	can	be	indirect,	much	like	an	indirect	cell	in	excel	or	a	pointer	in	C.	An	indirect
variable	is	a	variable	(as	above,	except	ML/MC/MT)	prefixed	by	G,	M	or	I-L.	Again,	this	might
be	better	shown	by	example:

GL0 - global array G, index is that of the value
 stored in variable L0 (local array L, 1st index)
MG03 - MIDI message array, index is that of the value
 stored in the variable
G03 - (global array G, 4th index)

Variables	can	be	used	in	conditional	blocks,	send	commands,	assign	directives	and	maths
directives	(all	explained	below).	Variables	cannot	be	used	in	Stream	Byter	1	rules.

Timer	Variables

A	special	set	of	8	'timer'	variables,	T00	to	T07	are	also	available.	These	let	you	do	timing
calculations	inside	the	Stream	Byter.
Each	time	you	refer	to	a	timer	variable,	the	value	returned	will	be	the	number	of	milliseconds
elapsed	since	that	timer	variable	was	last	referenced.
The	first	time	you	refer	to	a	timer	variable	after	a	scene	load,	it	will	return	0	milliseconds.
As	the	timer	variables	are	16	bit,	the	maximum	time	interval	is	65.535	seconds.
Tip	-	the	values	of	variables	are	not	reset	when	you	press	the	'Install	Rules'	button,	but
they	are	reset	during	a	scene	load.'

Values

A	value	is	either	a	variable	(as	above)	or	a	literal	hex	value.
Don't	like	using	hex	numbers?	You	can	prefix	literal	values	with	a	'$'	symbol	to	mark	them	as
decimal	values:

 MAT M0 = $20 + $40
 ASS L0 = $127

Tip	-	You	can	specify	negative	decimal	number	like:	$-32
You	can	also	use	note	literals	(according	to	yamaha	note	numbering	convention	which
numbers	the	notes	from	C-2	to	G8)	by	prefixing	the	note	with	a	'^'	character.

 assign i0 = ^C-2 ^G8 ^Bb0 ^3C ^F#6

 if m1 == 90 ^3c
 # found a middle C
 end

Aliases

You	can	give	any	value	an	alias	(single	word)	of	your	choosing	to	make	your	code	easier	to
read.	Aliases	are	set	using	the	ALIAS	keyword:

ALIAS <value> <name>

Whenever	the	'name'	parameter	of	the	ALIAS	rule	is	seen	in	place	of	a	value,	then	that	value
will	be	referenced	instead.	Here	is	an	example:

IF LOAD
 # setup some aliases
 ALIAS Q0 CHANNEL
 ALIAS $127 CC_MAX
 ALIAS I0 TEMP_VARIABLE
END

IF MC == CHANNEL
 MAT TEMP_VARIABLE = B0 + CHANNEL
 SND TEMP_VARIABLE 07 CC_MAX
END

Tip	-	Generally	you	will	want	to	set	aliases	inside	an	IF	LOAD

Conditionals	(IF/ELSE/END)

A	conditional	block	is	a	set	of	rules	that	will	only	be	evaluated/executed	if	the	condition	is	true.
An	IF	must	be	terminated	by	an	END	to	mark	the	end	of	the	conditional,	but	an	ELSE	is
optional.	For	example:

see if the current MIDI message
is a program change on MIDI channel 1
IF M0 == C0 # compare 1st msg byte with 'C0' literal
 # do something
ELSE
 # do something different
END

The	conditional	expression	(after	the	IF)	is	defined	as

<value> <operator> <value> [<value> [<value>] [<value>]] [+L[OOP]]

An	operator	can	be	one	of:

==, !=, <, <=, >, >=

If	more	than	one	value	is	specified	after	the	operator	(max	4)	then	the	left	hand	value	should
be	a	variable	and	each	right	hand	variable	corresponds	to	an	incremental	index.	Example:

IF M12 == 64 32 G01
 # do something
END

This	compares	M12	against	64,	M13	against	32	and	M14	against	G01	and	only	if	all	3	are	equal
is	the	condition	true.	This	is	useful	for	identifying	specific	sysex	messages	that	you	wish	to
modify	as	they	pass	through.
Here	is	an	example	using	an	indirect	reference	to	demonstrate	that	in	a	multi	RHS	comparison,
against	an	indirect	LHS	value	enumerates	the	primary	array	and	not	the	second:

ASS K0 = 1 2 3 4 5 6 7
ASS I0 = 3

IF KI0 == 4 5 6
 # this will be true
END

the conditional above works out to be
the same as
IF K3 == 4
 IF K4 == 5
 IF K5 == 6
 END
 END
END

Conditionals	can	be	nested	to	make	an	'and':

IF M00 == B0
 IF M01 < 20 30
 END
END

or	in	series	as	an	'or'

IF G0 > 01
END
IF G0 <= 01
END

The	'+L'	flag	indicates	that	the	condition	is	to	execute	in	a	loop.	When	control	reaches	the
matching	END,	instead	of	proceeding	to	the	following	rule,	control	is	instead	passed	back	to
the	original	IF	line	where	the	condition	is	evaluated	again.	If	the	condition	is	(still)	true,	then	the
IF	clause	is	executed	again.	If	the	condition	is	false,	control	jumps	to	the	next	rule	after	the
matching	END.	Note,	to	avoid	nasty	hangs	if	an	infinite	loop	is	accidentally	programmed,	a
looped	conditional	will	not	loop	more	than	128	times.
Tip	-	You	can	use	the	keyword	'WHILE'	instead	of	the	'IF'	which	implies	the	+L	flag	is	set.

ASS I0 = 0
IF I0 < 10 +L
 MAT I0 = I0 + 1
END

is	the	same	as:

ASS I0 = 0
WHILE I0 < 10
 MAT I0 = I0 + 1
END

Finally,	there	is	a	special	condition	called	'LOAD'	which	is	always	true	when	a	module	is	loaded
(either	when	the	app	starts	or	is	in	a	scene	that	is	recalled).	This	lets	you	initialise	or	do	stuff
before	any	messages	are	processed.	Inside	a	LOAD	block,	the	M	variable	array	is	not	available,
since	there	is	no	MIDI	message:

send program change 2/ch1 with 2s delay on load
IF LOAD
SND C0 01 +D2000
END

Extra	rules	(BLOCK/EXIT)

In	version	1.4,	two	new	rules	to	make	logic	a	little	easier	are	available:
BLOCK	-	block	the	current	event	(same	as	XX	=	XX	+B)
EXIT	-	stop	any	further	processing	and	exit	the	script	immediately

block and exit script when we see an
active sense message
IF M0 == FE
 BLOCK
 EXIT
END

Tip	-	BLOCK	and	EXIT	have	no	effect	inside	an	IF	LOAD	section.

Send	(SND)

You	use	the	SND	command	to	issue	an	arbitrary	MIDI	message:

S[E]ND <value> [<value> {<value> ...}] [+F[ORCE]] [+I[NJECT]] [+Dnnnn]

Here	are	some	examples

SND C0 01 # send PC 1 to module's output
SND M0 M1 7F # send current message with 3rd byte
 # fixed to 127
SEND G0 L0 L1 # send a MIDI message constructed from
 # global/local variables

inject message back into StreamByter in 500ms
SND B0 07 72 +I +D500

The	maximum	number	of	bytes	that	can	be	sent	in	the	one	SND	rule	is	16.
Normally,	StreamByter	will	check	that	what	you	are	trying	to	send	is	a	valid	MIDI	message.
Sometimes,	you	might	wish	to	make	up	a	long	sysex	message	and	need	to	split	over	multiple
SND	lines.	You	can	disable	to	validation	checking	using	the	+F	(force)	flag.
The	+I	flag	indicates	that	the	message	is	not	sent	to	StreamByter's	output,	but	is	injected	into
StreamByter's	input	where	it	will	then	be	processed	by	the	current	ruleset.	Injected	events	can
also	be	delayed	(see	below)
Finally	you	can	delay	the	SND	by	using	the	+Dnnn	flag	(where	nnn	is	a	decimal	value	in	ms),	so
+D2000	means	with	a	2	second	delay.	The	maximum	delay	is	65535	milliseconds.
New	in	version	1.4	is	the	ability	to	send	a	UDP	message	using	the	SND	command:

S[E]ND <start> <size> +U<hostname>:<port>

The	data	to	be	sent	is	taken	(only)	from	the	'W'	array,	so	it	is	possible	to	send	arbitrary	binary
UDP	messages	(for	example	OSC)	of	up	to	2048	bytes.	The	'start'	parameter	is	the	index
number	of	byte	0	in	the	W	array	and	the	'size'	parameter	is	the	number	of	bytes	to	send.
'hostname'	and	'port'	are	the	UDP	destination	credentials.

IF LOAD
 # setup two OSC messages in W array
 ASS W00 = 4F 53 43 00 # 'OSC'
 ASS W10 = 41 42 43 00 # 'ABC'

 # you can use variables for start, size and port
 # this example for second 'ABC' message
 ASS I0 = 10 4
 ALIAS I2 PORT
 ASSIGN PORT = $2468
END

send our OSC messages when we see sustain pedal
IF M0 = B0 40 7F
 # send 'OSC' to host1 on port 1234
 SND 0 4 +Uhost1:$1234

 # send 'ABC' to local IP on port 2468
 # using variables I0-2 for credentials
 SND I0 I1 +U192.168.1.1:PORT
END

Tip	-	The	SND	+U	implies	the	+F	flag	is	set.

Assign	(ASS[IGN])

Assign	is	used	to	set	the	value(s)	of	array	variables:

ASS[IGN] <value> = <value> [<value> ...] [+P[RESERVE]]

Like	conditionals,	by	specifying	multiple	values	to	the	right	of	the	'='	is	a	fast	way	of	setting
multiple	values	in	an	array:

ASS L0 = 12 # assign '12' to L0
ASS L0 = 01 02 03 04 # assign 01 to L0, 02 to L1,
 # 03 to L2, 04 to L3

ASS G0 = M0 # assign value in M0 to G0
ASS GL0 = 12 # assign '12' to array G indexed
 # by value of L0
ASSIGN K0 = 00 +P # assign 0 to K0, the value of K0
 # is preserved

The	'+P'	flag	indicates	that	the	array	values	being	assigned	to	should	be	preserved	in	the
scene	or	between	app	invocations.	When	the	scene	is	loaded	or	the	app	is	restarted,	the
preserved	value	will	be	restored	into	the	array	value.	You	may	only	specify	the	+P	flag	where
you	are	assigning	to	the	global	or	local	arrays	directly.

Maths	(MAT[H]|CAL[C])

MAT	commands	are	a	single	assign	but	with	two	operands	and	a	mathematical	operator:

MAT[H] <variable> = <value> <operator> <value>

operators	are:

+, -, *, /, &, |, ^ and %

MAT L0 = L0 + 1 # increment L0 by 1
MAT G0 = L3 % L4 # assign value of L3 modulo value of L4
 # to variable G0

Tip	-	You	can	use	MATH	or	CALC	keywords;	they	are	the	same	as	MAT

Labels/Flags	(SET)

You	can	set	the	value	of	the	two	'info'	labels	on	the	StreamByter	UI	using	a	SET	rule:

SET [LB0|LB1] <value|S<string>> [+D[ECIMAL]] [+N[OTE]]

Where	LB0	is	the	left	label	and	LB1	is	the	right	label.
Value	is	as	defined	above	(literal	or	variable)
You	can	set	the	label	to	an	arbitrary	string	by	prefixing	with	'S'
The	optional	+D	flag	means	display	the	value	in	decimal	(default	is	hex)
The	optional	+N	flag	means	display	the	value	as	a	note	name

set left block label to the hex 32
SET LB0 32

set right block label to the value stored in byte 3
of the current message
SET LB1 M02 +D

set left block label to the string 'ON'
SET LB0 Son

set right block label to name of incoming note
IF M00 >= 90
 IF M00 <= 9F
 IF M02 > 00
 SET LB1 M01 +N
 END

 END
END

Introduced	in	version	1.4	are	some	extra	things	that	can	be	set	from	a	script:
NVR	-	with	version	1.4	onwards,	note	events	with	a	velocity	value	of	0	are	automatically
converted	to	note	off	events	before	being	passed	the	the	script.	This	saves	you	from	the
dreaded	9X	XX	00	=	8X	incantation.	However,	if	you	do	not	like	that	behaviour	you	can	set	the
NVR	flag	to	0	and	keep	it	the	way	it	was.

SET NVR <0|1>

NAME	-	you	can	give	your	script	a	name	and	in	the	case	of	an	AU	host	(eg	AUM)	that	name	will
be	shown	under	the	icon.	This	can	be	set	dynamically.

SET NAM[E] <yourname>

SLI[DER_DISPLAY]	-	you	can	expose	or	show	the	controls	panel	from	a	script	by	setting	this	flag
to	1	(expose	1st	panel),	2	(expose	2nd	panel)	or	0	(hide).	Helpful	if	you	want	the	controls	to
appear	automatically	when	your	script	is	loaded.	This	can	be	set	dynamically.

SET SLIDER_DISPLAY <0|1|2>

FLUSH	-	setting	this	to	1	will	flush	all	pending	(advanced	scheduled)	MIDI	events.

SET FLU[SH] 1

Sliders,	Menus	and	Buttons

Introduced	in	version	1.3,	the	controls	panel	(exposed	by	touching	the	round	icon	on	bottom
right)	is	a	set	of	16	UI	widgets	(sliders,	buttons	or	menus)	that	can	control	your	script	or	be	set
from	within	your	script	(ie.	bi-directional).	The	widgets	are	available	as	two	separate	pages	of	8.
Touch	the	controls	icon	to	move	from	page	1	to	2.	Note	that	the	second	page	of	controls	will
not	normally	be	available	if	the	code	does	not	use	controls	Q8	to	QF.

	
Controls	Panel

Widget	values	are	controlled	in	a	script	using	the	'Q'	array	(0	to	F).	If	a	Q	array	value	is	set
inside	a	script,	then	the	widget	will	change	according	to	the	new	value.	Adjusting	the	widget
will	update	the	current	value	in	the	corresponding	Q	array.

In	addition,	when	you	adjust	a	widget	an	internal	sysex	message	is	fed	into	the	script,	so	you
can	track	when	a	widget	is	changed	and	do	something.	The	format	of	the	internal	sysex
message	is:

 F0 7D 01 nn F7

Where	'nn'	is	a	value	from	00	to	0F	representing	the	widget	that	was	changed
'nn'	above	can	also	be	the	value	7A,	7B	or	7C	which	represents	(respectively)	start,	continue
and	stop	events	either	from	MIDI	clock	or	the	host	transport.
Tip	-	the	internal	sysex	message	never	leaves	StreamByter	so	no	need	to	block	it.
You	can	give	the	widget	a	name	(10	character	max,	single	word)	and	change	the	widget's
range	from	the	default	of	0-127	using	the	SET	rule	as	follows:

 SET Q[0-F] <name> [min [max]] [+B[UTTON]|M[ENU]|N[OTE]|Y[ESNO]|T[OGGLE]|H[IDE]]

By	default,	the	controls	panel	consists	of	all	sliders,	but	you	can	replace	any	slider	with	either	a
push	button	or	a	drop	down	menu.	Drop	down	menus	can	be	just	numeric	(including
negatives),	note	names	(range	limited	if	required)	or	booleans.	You	use	the	+	flags	shown
above	to	setup	a	widget.
In	the	case	of	a	button	or	toggle	widget,	the	Q	value	will	toggle	between	0	and	1	on	each
press.	A	toggle	is	highlighted	whenever	its	current	value	is	1.	In	the	case	of	a	boolean
dropdown,	the	Q	value	will	be	0	or	1.	All	other	widgets	will	set	Q	to	the	value	shown,	or	in	the
case	of	a	note	dropdown	it	will	be	the	note	number	that	corresponds	to	a	note.
The	+HIDE	flag	will	hide	the	control	from	the	controls	box.	There	is	no	need	to	explicitly	hide
all	controls	on	the	second	(Q8-16)	page	if	they	are	not	used.
Here	is	a	full	example	of	how	to	configure,	set	and	track	widgets:

IF LOAD
 # configure widgets name and range
 SET Q0 CHANNEL 1 $16 +MENU
 SET Q1 SWITCH +YESNO
 SET Q2 NOTE 3C 47 +NOTE
 SET Q3 PUSH_ME +BUTTON
 SET Q4 OCTAVES $-4 $4 +MENU
 SET Q5 DELAY_MS $100 $2000

 # set widget initial values
 ASS Q0 = 1 0 3D 0 0 $500
END

handle widget movements
IF M0 == F0 7D 01

 # show widget number in left label
 SET LB0 M3 +D

 # show widget value in right label
 IF M3 == 2
 SET LB1 QM3 +NOTE
 ELSE
 SET LB1 QM3 +DECIMAL
 END

END

Each	widget	is	exposed	as	an	AU	parameter,	so	remote	control	of	controls	via	the	host	are
possible.	Note,	that	the	widget	range	via	AU	is	fixed	at	0	to	127,	but	AU	parameter	change
messages	are	scaled	to	fit	the	actual	widget	range.

Macros,	Subroutines	and	Includes

Version	1.4	introduces	two	new	code	features;	DEFINE	and	SUBROUTINE
The	DEFINE	rule	lets	you	give	any	sequence	of	code	tokens	a	name	and	then	use	that	name
further	in	the	code	instead	of	typing	in	the	original	text.	This	is	similar	to	a	#define	in	C	but	no
parameters.	Like	the	C	version,	you	can	have	DEFINES	that	refer	to	previous	DEFINES.

DEF[INE] <name> <some code>

It	is	essentially	a	find/replace.	Best	explained	by	example:

IF LOAD
 DEFINE MSG0 M0
 DEFINE ANY_SLIDER F7 7D 01
 DEFINE SLIDER0_MOVED MSG0 == ANY_SLIDER 00
END

IF SLIDER0_MOVED
END

The	SUBROUTINE	rule	allows	you	to	create	code	subroutines	(with	arguments)	that	you	can
call	from	elsewhere	in	your	code.

SUB[ROUTINE] <name> [<args>]
 ... lines of code ...
END

courtesy of Millie Jackson
IF LOAD
 SUBROUTINE MUFFLE ARG1 ARG2
 IF ARG1 >= 40
 SEND B0 ARG1 ARG2
 END
 END

 ALIAS L0 THAT
 ALIAS L1 FART
END

IF MT == 90
 MUFFLE THAT FART
END

Arguments	can	be	any	string	you	like.	Note	that	arguments	are	passed	to	the	subroutine	via
reference,	so	for	example:

SUBROUTINE ZAP VARIABLE
 ASS VARIABLE = 0
END

ZAP I0 # will set I0 to 0

It	is	possible	for	a	subroutine	to	call	itself	(recursion),	but	to	prevent	infinite	recusion,	the
maximum	recursion	level	is	256	calls.
When	a	subroutine	is	called	and	any	of	its	arguments	were	not	passed	by	the	caller,	those
missing	arguments	will	have	a	literal	value	of	0.
As	well	as	the	argument	strings	set	in	the	SUB	rule,	the	arguments	are	also	available	using	the
'Z'	array	and	the	number	of	arguments	passed	is	in	the	special	variable	'ZN'	(number	of	args).
This	means	a	subroutine	can	determine	the	number	of	arguments	and	cycle	through	them	like
this:

IF LOAD
 SUB FOO ARG1 ARG2
 # send a CC with each passed arg as
 # CC value
 ASS I0 = 0
 WHILE I0 < ZN
 SND B0 01 ZI0
 MAT I0 = I0 + 1
 END

 # note, Z0 will be the same as ARG1,
 # and Z1 is the same as ARG2
 SET LB0 ARG1 +D
 SET LB1 ARG2 +D
 END
END

Includes	is	a	mechanism	for	pulling	in	other	code	from	StreamByter's	presets	or	the	web.	You
may	have	a	library	of	handy	subroutines	that	you	use	in	many	of	your	scripts.	If	so,	you	can	save
those	subroutine(s)	to	a	preset	and	include	those	subroutines	in	other	scripts	at	Install	Rules
time.

SET INC[LUDE] F[ACTORY]|L[OCAL]|I[CLOUD]|U[RL] <preset_name>|<url>

Include	presets	must	be	saved	as	one,	single	word	in	order	to	be	recognised.	A	url	must	be
https	and	point	to	an	.sbr	file.	Includes	cannot	be	nested;	an	include	inside	an	include	is	simply
ignored.
A	factory	icnlude	set	'standard_includes'	is	shipped	with	StreamByter	which	gives	some
common	message	types	some	standard	names	and	re-usable	subroutines.	Just	open	up	the
standard_includes	preset	to	see	what	is	available.

IF LOAD
 # pull in the standard factory includes
 SET INCLUDE FACTORY standard_includes

 # retrieve some code includes locally
 # (local preset 'AUDEONIC_INCLUDES' must exist a local preset)
 SET INCLUDE LOCAL AUDEONIC_INCLUDES

 # retrieve some code includes from a URL
 # (url must resolve to a valid .SBR file)
 SET INCLUDE URL https://audeonic.com/midifire/club/FOO_INCLUDES.SBR
END

When	an	Include	is	resolved	it	is	as	if	the	rules	in	the	include	file	replace	the	include	line,	so	be
aware	of	placement	of	your	includes.
An	include	line	will	be	flagged	in	error	if	the	included	code	could	not	be	found	or	if	the
included	code	itself	has	an	error.
Tip	-	It	is	suggested	for	efficiency	that	all	ALIAS,	DEFINE,	SUBROUTINE	and	INCLUDE
rules	be	inside	an	IF/LOAD,	but	that	it	not	mandatory.

Debugging	Log	(LOG)

When	writing	StreamByter	code,	it	can	be	helpful	to	log	what	is	happening	in	your	script	using
the	LOG	rule:

LOG <string> [<value> [+D|+N]]

Where	the	mandatory	one	word	string	is	a	string	of	your	choice	(use	underscores	in	the	string
to	get	spaces	in	the	log	entry).
Value	is	optional	and	can	be	a	literal	or	variable.
Use	the	+D	(decimal)	or	+N	(note)	flag	to	display	the	value	as	decimal	or	note.

 # log when script is loaded
 if load
 log Script_Loaded
 end

 # log each note on received
 if MT == 90
 LOG Note_on M1 +Note
 LOG Note_Velocity M2 +Decimal
 end

Log	entries	are	shown	on	the	output	event	logger.	Each	log	entry	is	timestamped	with	that	of
the	MIDI	event	that	was	being	processed	when	the	LOG	rule	was	reached	(or	the	current	time
if	inside	an	IF/LOAD).

Send	Keystroke	(KEY)	(mac	standalone	only)

The	KEY	rule	allows	you	to	send	a	single	keystroke	to	the	currently	focussed	application	from
your	script.	Think	converting	MIDI	events	to	qwerty	keystrokes.

KEY <N|S|C|A|O> <keysym>

Where	the	first	parameter	denotes	the	key	modifier	and	can	be	NORMAL,	SHIFT,	CONTROL,
ALT	or	OPTION.
The	second	parameter	is	the	mac	'keysym'	to	be	sent.	This	is	a	number	and	depends	upon
your	keyboard	layout.	Search	the	web	to	find	tables	of	keysyms	for	your	keyboard	layout.

 IF M0 == B0 12 42
 # send 'q' key to current application
 KEY NORMAL $12
 END

Advanced	Examples

Finally,	here	are	some	examples	of	more	advanced	ways	of	using	the	Stream	Byter

convert a 16 bit unsigned value to
signed 32 bit value while preserving
implied sign
ASS P0 = L0
IF P0 >= 8000
 MAT P0 = P0 | FFFF0000
END

controller value remap table
IF LOAD
 ASS L00 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L10 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L20 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L30 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L40 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L50 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L60 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
 ASS L70 = 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12
END
remap value of CH1/CC7
IF M0 == B0 07
 ASS M2 = LM2
END

In	Conclusion top
If	you're	still	having	problems	or	just	have	questions,	please	do	contact	us	at
apps@audeonic.com	or	join	us	on	the	Audeonic	Soapbox	(forum)	at
http://soapbox.audeonic.com	where	you	will	find	many	code	examples	as	well	as	ready-to-run
presets	that	you	can	copy/paste.
As	a	parting	note,	we	hope	you	find	StreamByter	useful	and	would	like	to	thank	you	for
downloading	it.
We	would	really	appreciate	it	if	you	could	take	a	little	bit	of	time	and	rate	and	review
StreamByter	on	the	App	Store	to	assist	others	who	may	be	considering	downloading	the	app
and	of	course	(hopefully)	augmenting	the	development	team's	egos.
Tip	-	HTML	was	authored	by	hand	in	Dublin,	Ireland
--	end

